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Abstract

Chunking in language comprehension is a process that segments continuous linguistic input into smaller
chunks that are in the reader’s mental lexicon. Effective chunking during reading facilitates disambiguation
and enhances efficiency for comprehension. However, the chunking mechanisms remain elusive, especially in
reading, given that information arrives simultaneously yet the written systems may not have explicit cues for
labeling boundaries such as Chinese. What are the mechanisms of chunking that mediates the reading of the
text that contains hierarchical information? We investigated this question by manipulating the lexical status of
the chunks at distinct levels in four-character Chinese strings, including the two-character local chunk and
four-character global chunk. Male and female human participants were asked to make lexical decisions on
these strings in a behavioral experiment, followed by a passive reading task when their electroencephalogra-
phy (EEG) was recorded. The behavioral results showed that the lexical decision time of lexicalized two-char-
acter local chunks was influenced by the lexical status of the four-character global chunk, but not vice versa,
which indicated the processing of global chunks possessed priority over the local chunks. The EEG results re-
vealed that familiar lexical chunks were detected simultaneously at both levels and further processed in a dif-
ferent temporal order, the onset of lexical access for the global chunks was earlier than that of local chunks.
These consistent results suggest a two-stage operation for chunking in reading, the simultaneous detection of
familiar lexical chunks at multiple levels around 100ms followed by recognition of chunks with global
precedence.

Key words: EEG; hierarchy; lexical access; reading; segmentation

Significance Statement

The learners of a new language often read word by word. However, why can proficient readers read multiple
words at a time? The current study investigates how we efficiently segment a complicated text into smaller
pieces and how we process these pieces. Participants read Chinese strings with different structures while
their key-press responses and brain electroencephalography (EEG) signals were recorded. We found that
texts were quickly (;100ms from their occurrences) segmented to varied sizes of pieces, and larger pieces
were then processed earlier than small pieces. Our results suggest that readers can use existing knowledge
to efficiently segment and process written information.
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Introduction
Reading is arguably one of the unique human intelligen-

ces. However, how we process written texts remains elu-
sive. For instance, how can we comprehend a complex
sentence? A sentence consists of many letters/characters
that form a hierarchical structure of text chunks (e.g., mor-
phemes, words, and phrases). Readers need to incremen-
tally segment a complex sentence into smaller chunks
that map onto their mental lexicon. This process is termed
as text chunking (Reali and Christiansen, 2007; Gobet et
al., 2016). What are the small chunks during chunking?
How do we process the chunks? To answer those ques-
tions, this study investigated the cognitive procedure of
text chunking.
Words and their sublevel (morphemes) are usually as-

sumed as the basic units in reading models in psycholin-
guistics and computer science (McClelland and Rumelhart,
1981a; Coltheart et al., 2001; Taft, 2013). However, eye-
tracking studies suggested we can perceive the text infor-
mation longer than a word at one time (Rayner, 1998). Our
working memory also allows us to remember familiar multi-
ple words (Miller, 1956). Even more, multiword expressions
can be stored in our mental lexicons (Arnon and Snider,
2010; Siyanova-Chanturia et al., 2017). These studies sug-
gest the multiword representations and the beyond-word
processing are feasible. Moreover, relying on larger chunks
effectively reduces the cognitive load while processing
sentences: fewer chunks to be interpreted and integrated
(Ellis, 2003; Krishnamurthy, 2003; Blache and Rauzy,
2012). Furthermore, the semantic combination of constitu-
ents can be different from holistic meaning (Goldberg,
1995). One extreme example is idioms, as the metaphors
of an idiom can be distinct from their literal meanings of
smaller constituents. Multiword representation is required
in certain contexts to avoid ambiguity. Therefore, multi-
word chunks, as well as word chunks, could be the units
during chunking.
What is the relation between the processes of word

chunks and multiword chunks during chunking? The
studies of compound words (a single lexical entity but
consists of more than one root morphemes, e.g., “flag-
ship”) may offer hints. According to the dual-route models
of compound-word processing, both the whole word and
its constituents are processed at the same time or are se-
lected to process each level flexibly (Andrews et al., 2004;
Koester et al., 2007; MacGregor and Shtyrov, 2013;
Semenza and Luzzatti, 2014; Blache, 2015). In a similar

vein, we hypothesized that all the familiar lexical chunks,
no matter which level it is, could be processed simultane-
ously. More specifically, the detection of chunks would be
the first step in chunking, and the detection of chunks at
multiple levels would occur at the same time, as the early
lexical familiarity checking assumed in the E-Z reader
model (Reichle et al., 2003).
How does the multilevel operation unfold in the chunk-

ing process? Which level has the priority after being de-
tected? The word superiority effect indicates that the
recognition of letters within words is better than letters in
nonwords or stand-alone letters (Reicher, 1969). It sug-
gests that the word has priority over the letter in reading.
Similarly, the processing priority of global chunks can re-
duce the steps of integration and avoid the ambiguity to
enhance the efficiency of language processing (Ellis,
2003; Krishnamurthy, 2003; Blache and Rauzy, 2012).
Generalizing from the word superiority effect, we hy-
pothesized that global chunks took priority over the parts
and would be initiated first in the processing stage after
detection.
In this study, we used Chinese four-character strings to

investigate the chunking operation in reading. Chinese
written system is an ideal model for observing multilevel
chunking because the Chinese do not have explicit word
boundaries. Each Chinese character is a basic lexical unit
with a similar length. Four characters can form two levels
of chunks, chunks with two characters (hereafter as the
local level chunks) and a chunk with four characters (here-
after as the global level chunk). The lexicality was manipu-
lated at both levels so that four types of stimuli were
included (phrase, idiom, random words, and random
characters). In the behavioral experiment, we investigated
the interaction between the global and local chunks in
reading by a lexical decision task at different levels of
chunks. Moreover, an electroencephalography (EEG) ex-
periment was conducted to investigate the temporal dy-
namics of detection and recognition stages in the
multilevel chunking operation.

Materials and Methods
Participants
Twenty-one healthy native Chinese speakers (10 males,

mean age 21 years, range 18–30 years) with normal or cor-
rected-normal vision participated in both behavior and
EEG experiments for financial compensation. Five partici-
pants who produced extensive EEG artifacts were ex-
cluded from EEG analysis. Hence, a total of 16 participants
were included in the EEG study. The experiments were ap-
proved by the Research Ethics Committee of East China
Normal University and New York University Shanghai.
Written informed consents were obtained from all partici-
pants before the experiments.

Stimuli
All stimuli are four-Chinese-character strings. Two fac-

tors are included when designing these stimuli. The first
factor is the chunk size that contains two levels, a global
size of four characters and a local size of two characters.
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The second factor is lexicality (word or nonword) at each
chunk size. These two factors are fully crossed and yield
four types of stimuli. We denote chunk size using upper
case letters, G for global and L for local, and use lower
case letters for lexicality in each chunk size (w for word
and n for nonword). For example, GnLw stands for the
condition of stimuli that are four-character nonwords at
the global level made of two two-character words at the
local level. Note that the stimuli in GwLn are Chinese idi-
oms, “Chengyu.” They are lexicalized compound phrases
that consist of four independent mono-morphemic char-
acters. None of the two characters in Chengyu can form a
common word, whereas the four characters together form
an idiomatic expression. Chengyu generally expresses
the gist or moral message of myths, stories, or historical
events from which they were derived. Therefore, the
meaning of a Chengyu usually surpasses the sum of the
meanings from the four characters. The four types of stim-
uli are listed in Table 1.
We selected and created all stimuli with the following

steps. We extracted the GwLw and GwLn stimuli from a
database of Sogou Pinyin (https://www.sogou.com/labs/
resource/w.php) and a database of Chinese characters
(CharDB: data version: 0.98.1; program version: 0.97.2;
https://chardb.cls.ru.nl/). All the GwLw and GwLn stimuli
satisfied the following criteria at the global level: (1) noun
(the part of speech is determined by a record of the lexicon
of Jieba v0.36: https://github.com/fxsjy/jieba); (2) high-fre-
quency (the frequency was determined by the database of
the Sogou Pinyin, and the high-frequency meant the fre-
quency above 3000); and (3) no duplicative characters
(e.g., “高高兴兴,” translation: happy). Moreover, the GwLw
stimuli satisfied the following criteria at the local level:
(1) both two-character words were nouns, and (2) high-fre-
quency words. Moreover, the lexicality of GwLn stimuli at
the local level was verified by checking if the first two or
last two characters’ combination did not exist in the Sogou
Pinyin database. These selection criteria made the GwLw
and GwLn stimuli consistent in all aspects except the lexi-
cal status at the local level.
The GnLw stimuli were created by randomly pairing two

different two-character words, the Lw in GnLw and GwLw
follow the same criteria. So the only difference between the
GwLw and GnLw was the lexical status at the global level.
Finally, the GnLn stimuli were created by randomly mixing

four different characters, and none of the first or last two
characters’ combinations existed in the Sogou Pinyin data-
base. Characters used in all stimuli have log frequency
ranging from 3.011 to 5.344, with stroke counts ranging
from 4 to 13. The character’s log frequency was deter-
mined by the Subtitle Database (Cai and Brysbaert, 2010).
The distinction between word and nonword was further

controlled by familiarity. Twelve participants who were not
in the main experiment were asked to rate the familiarities
of either the entire four-character or the constituents of
two-character strings as being words or not. The rating
range was from 1 to 5, where 1 stands for unfamiliar
strings/nonwords and 5 for familiar words. The strings that
were rated from 2 to 4 were removed and remained the
stimuli that were either very familiar words or very unfamiliar
nonwords in a pool. Eighty stimuli in each condition were
randomly selected from the pool and used in this study.

Procedure behavioral experiment
In each trial, participants were first asked to focus on

a cross presented at the center of the screen. After
400ms, the fixation cross disappeared, and a four-
character string was shown until response. A line also
appeared either under the entire four-character string
or under the two-character string (the first or the last
two characters). Participants were asked to make a lexi-
cal decision about the underlined string, either the en-
tire string (global task henceforth) or the constitute of
first or last two-character string (local task henceforth)
by pressing either “F” or “J” on the keyboard as fast as
possible. Participants had a maximum of 3 s to re-
spond. Responses and reaction time were collected.
Response keys were counterbalanced across partici-
pants. The intertrial intervals were randomly selected
from a range from 800 to 1000ms.
Four stimuli types (GwLw, GwLn, GnLw, and GnLn)

were fully crossed with task types (global task vs local
task) and yielded eight conditions; 320 trials were in-
cluded in this experiment. Half of the trials were randomly
selected and used in the global task and the other half in
the local task. The order of conditions was randomized.
The experimental presentation was programmed on a
Python package, Expy, which is a software for presenting
and controlling psychological experiments (https://expy.
readthedocs.io/).

Table 1: Stimuli description

Local word Local nonword
Global
word

GwLw: lexicalized compound phrase composed of two
two-character words.

E.g., “希 腊 神 话 ” (pinyin: xī là shén huà),
translation: Greek mythologies. “希 腊 ” and “神 话 ” means
“Greek” and “mythologies” in Chinese, respectively

GwLn: lexicalized compound phrases that consist of 4 inde-
pendent mono-morphemic characters (Chinese idioms
“Chengyu”).

E.g., “以 逸 待 劳 ” (pinyin: yǐ yì dài láo),
translation: wait for the exhausted enemy at your ease. “以
逸 ” and “待 劳 ” are not words in Chinese

Global
nonword

GnLw: non-lexicalized compound phrase composed of two
two-character words.

E.g., “存 款 电 脑 ” (pinyin: cún kuaõn diàn naõo),
translation: deposit-computer. “存 款 ” and “电 脑 ” means
“deposit” and “computer” in Chinese, respectively

GnLn: random character string, nonwords at both levels.
E.g., “投 其 顾 此 ” (pinyin: tóu qí gù cǐ),
a nonsense phrase. “投 其 ” and “顾 此 ” are not words in
Chinese either
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Behavioral data analysis
All participants had response accuracy exceeding 85%,

and the average accuracy was 92%. No participant’s data
were excluded. Trials with error responses were removed
before analysis. We applied repeated measures three-
way ANOVA (analysis of variance) on the reaction time
data with factors of global-level lexicality, local-level lexi-
cality, and task, followed by planned t tests for testing
specific hypotheses.

Procedure EEG experiment
The same group of subjects participated in the EEG ex-

periment. The EEG experiment shared the same stimuli
list with the behavioral experiment, but both the proce-
dure and the task are different. First, the display of each
character string lasted for 300ms. Participants were
asked to read the underlined parts of the stimuli (to keep
their attention on the stimuli), but they did not perform any
lexical decision task. We used all 320 strings with 80 for
each stimuli type in the global task and repeated once in
the local task. Moreover, 320 four-symbol strings were in-
cluded as the visual baseline in the EEG experiment. The
symbols in a symbol string trial were randomly sampled
with replacement from four symbols (h, 4, ^, and *).
Underlines were included in the symbol trials similar to
those in the global and local tasks in experimental trials.
Half of the trials were randomly selected and used in the
global task and the other half in the local task. To guaran-
tee participants’ attention on the stimuli, we randomly in-
serted strings of digits for 100ms, and participants were
asked to report the underlined digits by pressing number
buttons on a keyboard. About 48 number-report trials
were presented to each participant.

EEG recording
EEG signals were recorded with a 32-electrode active

electrodes system (actiChamp system, Brain Products
GmbH). FP1 and FP2 were used to monitor vertical eye
movements. Electrode impedances were kept below 10
kV. Data were continuously recorded in single DC mode.
Data were sampled at 500Hz, online referenced to the Cz.

EEG data analyses
EEG data were preprocessed using EEGLAB (version

13.5.4b; Delorme and Makeig, 2004). Data were band-
pass filtered (0.1–30Hz, Hamming windowed sinc FIR fil-
ter), and re-referenced to the average reference. The
preprocessed data were epoched between –200 and
800ms relative to the onset of strings and baseline-cor-
rected using the 200-ms prestimulus period. The trials
with eye blinks were rejected if the amplitude within the
1000-ms epoch exceeded 650 mV. Remaining trials with
apparent noise were rejected manually. Approximately
15% of trials were rejected. Five participants who pro-
duced a large number of artifacts or showed continuous a
waves were excluded from further analysis. Epochs in
each condition were averaged and created an event-re-
lated potentials (ERPs). Root mean square (RMS) re-
sponses were also calculated as a geometric mean of all
channels.

In addition to the univariate analyses on ERPs and RMS
responses, our analysis used the topographic patterns or
distributions across all sensors rather than the response
amplitude in selected groups of sensors, as it can provide
more holistic and unbiased information. Such multivariate
methods can collectively reflect spatial and temporal in-
formation and offer more power to test psychological and
neuroscience hypothesis by overcoming problems such
as individual differences, sensor selection and reference
selection in EEG (Murray et al., 2008; Tian and Huber,
2008; Tian et al., 2011; Yang et al., 2018; Wang et al.,
2019). Two multivariate-based methods [clustering and
topographic ANOVA (TANOVA)] and one mass-univariate
method (analysis of the topographic distribution of ampli-
tude differences) were applied as following.

Clustering. A clustering method on the ERP topo-
graphic responses was implemented first. This unsuper-
vised machine learning method groups data across all
conditions by forming temporal clusters based on the
similarity of their topographical patterns. This clustering
method is a data-driven method, in which it explores
the pattern similarity in topographies in all conditions. The
clustering algorithm organizes data at different time
points into distinct clusters, so that we can explore
the temporal dynamics of pattern changes. Moreover, if
one considers the clusters reflecting different processing
stages, this analysis can identify the processing stages in
each condition and display the temporal differences of
any specific stage among conditions. We used K-means,
the most popular algorithm for clustering. The clustering
analysis is an omnibus test about neural dynamics, which
can detect clusters and set up the time windows of inter-
est for the following analyses.
The procedure of clustering algorithm covers three

steps: (1) averaged EEG data across all participants to get
ERPs at each time point for each condition; (2) defined
ERPs at each time point in each condition as a sample,
and the amplitudes of 32 electrodes were used as fea-
tures in a sample; (3) K-means algorithm was conducted
at all samples. The K-means algorithm is data driven. The
target cluster number (K) can range from the minimum of
one to the number of data points. We assumed that the
baseline period to a fixation involved rest or random cog-
nitive processes. The topographies would be consistent
random patterns that were different from later sequences
of topographies induced by stimuli. If the K-means sepa-
rated the baseline period into more than one cluster, it
was most likely overfitting. Therefore, we set the criterion
of getting two clusters at the baseline period as a stop-
ping point for increasing the number of clusters. That is,
the K-means algorithm was conducted at all samples.
The number of clusters was initially two and increased
until the clustering result included more than one cluster
at the baseline stage.

Analysis of the topographic distribution of ampli-
tude differences. We calculated the response ampli-
tudes across all sensors at a given time window. The
changes in the amplitude differences can reflect the proc-
essing dynamics. Especially, the earliest time point that
shows significant differences would indicate the temporal
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onset of interest. Moreover, the spatial extent of experi-
mental effects can be estimated by the distribution of
sensors in which the amplitude differences are observed.
At a window size of 20ms, we checked the significant
electrodes (Yang et al., 2018) to obtain the distribution
differences between conditions. Because there were 32
comparisons in each time window, the p values were cor-
rected by false discovery rate (FDR). The primary purpose
of this analysis was to identify the possible onset timing of
any amplitude differences between conditions. However,
the power of detecting the onset using a measure of am-
plitude could be small. To reduce the Type II error, we did
not apply corrections across time so that we can reduce
the chance of missing the exact onset time of amplitude
differences.

TANOVA.We further investigate the patterns of topog-
raphies by considering all sensors at the same time to
infer the differences in underlying neural processes
across conditions. A single index was calculated to indi-
cate topographic information. Mathematically, each to-
pography can be viewed as an n-dimensional vector,
where the n equals the number of sensors. The diver-
gence between the topographies of two experimental
conditions can be quantified by the cosine value of the
high-dimensional angle between two vectors (Tian and
Huber, 2008). The cosine distance has a range from 0 to
2, where 0 stands for identical topographies and 2 exactly
opposite patterns. Note that the cosine distance repre-
sents the similarity between the response patterns in
topographies and is free from the difference of re-
sponse magnitude because the measure of cosine dis-
tance is normalized by the vector length. To statistically
test the cosine distance between topographies and to
infer the underlying neural processing in different condi-
tions, we applied an algorithm named TANOVA (Murray
et al., 2008; Tian and Huber, 2008; Brunet et al., 2011;
Tian et al., 2011; Lange et al., 2015). In TANOVA, null
hypothesis distribution is generated by shuffling the
condition labels, and we here shuffled the condition la-
bels on the subjects’ ERPs using the EasyEEG toolbox
(Yang et al., 2018; strategy 2, shuffle times: 1000, win-
dow size: 10ms). Furthermore, the temporal clusters in
the TANOVA results were identified by a precluster
threshold of 0.1 and were tested by the cluster-based
permutation with the corrected threshold of 0.05 (Maris
and Oostenveld, 2007).

Results
Behavioral experimental results
Reaction time was subject to repeated measures three-

way ANOVA with the factors of global-level lexicality,
local-level lexicality, and task. The main effect of global-
level lexicality was significant (F(1,20) = 10.83, p, 0.01),
suggesting that participants took longer time to identify
global-level nonwords than global-level words. The main
effect of local-level lexicality is significant (F(1,20) = 6.30,
p=0.02), suggesting participants took longer time to
identify local-level nonwords than local-level words.
However, the main effect of task is not significant (F(1,20) =

1.07, p=0.31), suggesting different tasks that require par-
ticipants to respond to either global or local chunks have
a similar level of difficulty. More importantly, all three two-
way interactions are significant, global-level lexicality �
local-level lexicality (F(1,20) = 57.11, p, 0.001), global-
level lexicality � task (F(1,20) = 16.02, p, 0.001), and
local-level lexicality � task (F(1,20) = 57.11, p, 0.001).
Planned post hoc t tests were further conducted in

each factor to specify the observed significant interac-
tions. First, we examined how global information affect
processing at the local level (Fig. 1A). In the local task, the
reaction time in GnLw was significantly longer than that in
GwLw (t(20) = 5.7145, p, 0.001, difference=55ms), sug-
gesting that the nonwords at the global level significantly
slowed down the lexical decision of words at the local
level. Moreover, the reaction time of GwLn was signifi-
cantly longer than GnLn in the local task (t(20) = 3.6214,
p=0.002, difference=54ms), suggesting that the words
at the global level also slowed down the lexical decision
of nonwords at the local level. Second, we examined how
the local chunk could affect processing at the global level
(Fig. 1B). In the global task, we did not find a significant
difference between reaction time to GwLw and GwLn
(t(20) = �1.0091, p=0.32; Fig. 1B, left), suggesting that the
lexical status of local chunks cannot affect the lexical de-
cision of words at the global chunks. These results collab-
oratively suggest that processing at the global level may
take priority.
Another comparison on how the local chunk could af-

fect processing at the global level revealed that the re-
action time of GnLw was significantly longer than that
of GnLn in the global task (t(20) = 6.6874, p, 0.001,
difference = 112ms; Fig. 1B, right). This result suggests
that the decisions of global chunks and local chunks
could be parallel when the global decision took too
long. The lexical information at the local level may leak
through to the processing of global chunks and influ-
ence the decision of nonwords. The behavioral results
demonstrate a unidirectional influence from the global
level to the local level when the task targets are words
and interactions between levels when the task targets
are nonwords that need more time to make decisions.
That is, global chunks may take priority in lexical proc-
essing. Whereas the processing of global and local
chunks could be parallel when global decision took too
long, the lexical information at one level may leak
through to the process of the other level and influence
the decision of nonwords. We further test the process-
ing dynamics in an EEG experiment.
To examine and exclude the possible effects of the

underline position, we extracted the trials with two-char-
acter underlines and ran a repeated measures three-way
ANOVA with the factors of global-level lexicality, local-
level lexicality, and underline position. The underline posi-
tion showed neither main effect (F(1,20) = 1.61, p=0.22),
nor interaction effect with global-level lexicality (F(1,20) =
0.01, p=0.92), nor interaction effect with local-level lexi-
cality (F(1,20) = 0.38, p=0.54). These results suggest that
positions of stimuli that were relevant to the task did not
affect response speed.
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EEG results
Clustering revealed distinct stages of chunking
We first conducted the clustering analysis to explore

the dynamics of ERP responses. The clustering algorithm
aimed to separate the continuous ERP responses into
distinct stages based on common features observed
across time. As shown in Figure 2, the clustering results
were reliable as similar clusters were observed continu-
ously in each condition.
More importantly, clear temporal profiles were revealed

by the clustering analysis in all conditions. First, the same
cluster was observed in the baseline period until around
80ms after stimulus onset, as well as at the end of epochs
(;600ms after onset) among all types of stimuli. The clus-
tering in these periods was presumably because few cog-
nitive processes that relate to the stimuli or task were
available or manifested in the ERP topographies. Second,
a novel cluster (the second cluster) appeared after
80ms across five conditions. The clustering spanned in
similar latencies as N1/P2 components, presumably re-
flecting visual processing. However, different dynamics
was observed across conditions after 200ms. The third
cluster appeared earlier in the symbol condition with a
much shorter duration than the four experimental string
conditions in which the third cluster appeared around
250ms and lasted ;90ms. Moreover, in the symbol
condition, the third cluster was immediately followed by
the sixth cluster that did not appear until 500ms in the
four experimental string conditions (except in GwLw
condition around 430ms). The early start and long-last-
ing sixth cluster in the symbol condition was accompa-
nied by the missing of the first and second clusters that
appeared around 320ms and lasted till 450ms in other
conditions.
More interestingly, a 15-ms period around 130ms was

labeled as the cluster baseline that was grouped in the
baseline and the end of epoch periods. This formed a

short gap that broke the early processing into two stages.
The clustering results set up the time windows of interest
for the following analyses. We focused on the compo-
nents in early timing to further investigate the underlying
processes of chunking operation.

Chunk detection in the earliest stage
To test the hypothesis about the lexical detection in

the earliest stage, we conducted analyses to investi-
gate the lexicality effects at the global and local chunk
levels. First, we applied repeated measures one-way
ANOVA on the ERPs in P3 and P4, as well as RMS
waveforms calculated using all channels (Fig. 3A,B).
We did not find any significant amplitude differences
among the four conditions. Next, compared with the
responses to GnLn strings that contained no lexical
chunks at either level, the topographical pattern of re-
sponse amplitudes in conditions that include lexical
chunks (GwLw, GwLn, and GnLw) did not show any
significant differences in any sensors after multiple
comparison correction (Fig. 3C). However, the differ-
ence topographies showed distinctive patterns of am-
plitude distribution (90–130ms, higher on the left
frontal area and lower on occipital area). These results
suggest that lexical detection could induce changes in
the configuration of neural sources, rather than in re-
sponse amplitude. Therefore, we investigated the
topographic patterns to infer the different configura-
tions of neural processing across conditions.
The analysis of TANOVA revealed significant differen-

ces between the topographies of GnLn and response pat-
terns in GwLw, GwLn, and GnLw conditions (Fig. 3D,
highlighted in the red box). The differences were first ob-
served at 90ms after stimulus onset. The differences
were most substantial in the GwLn-GnLn comparison as
the significant level at p, 0.01 for the following 20ms.
The pattern differences were also observed in the GwLw-

Figure 1. Results of the behavioral experiment. A, B, Reaction time results in the global and local tasks, respectively. In each plot,
condition labels are provided along the x-axis. Error bars represent 61 SEM (standard error of the mean). Each planned paired test
was represented by the line linking two bars; n.s., not significant; ppp, 0.01, pppp,0.001.
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GnLn comparison, but the significant differences started
later at 100ms and lasted for 30ms. The p value of the
90- to 100-ms time bin in the GnLw-GnLn comparison
was 0.0539, and the relative Bayes factor (BF10) was
2.3371, which indicates weak evidence in favor of H1
(Held and Ott, 2018). The TANOVA of the comparison be-
tween GnLn and the average of the other three lexical
conditions showed significant differences around 110ms
(Fig. 3E, highlighted in the red box). TANOVA revealed
that topographic differences occurred before 130ms be-
tween lexicalized chunks at either level and the non-lexi-
calized GnLn condition. These results suggested that the
early-stage process related to the detection of lexicality.
The global level information may facilitate the detection

because the effect size ranked from biggest to smallest in
the order of GwLn, GwLw, and GnLw.
We also observed significant differences in later re-

sponses. The GwLn has a significant cluster starting at
150ms, followed by GwLw that has a significant cluster
starting around 190ms. TheGnLw does not have a signifi-
cant late cluster until ;230ms. These latency differences
at a later stage suggested that the lexical processes could
first occur at the global level. We further investigate these
dynamics in the next session.

Processing of chunks at different levels
We applied responses amplitude and pattern analyses

between conditions with different lexical status either at

Figure 2. The dynamics of ERP responses and clustering results. A, Averaged ERPs waveform responses of all conditions from 32
electrodes (black lines), and RMS waveform response across all electrodes (red line). B, Temporal clustering results of topographies
for four conditions (GwLw, GwLn, GnLw, and GnLn) and a baseline symbol condition (symbol). Different colors represent distinct
clusters. Samples in the same color but at different time points indicate that they are grouped into the same cluster, sharing similar
features but occurring at different times. The temperature of colors represents the rank of the cluster distance relative to the cluster
baseline (cluster defined by the baseline period). Approximately 80ms after stimulus onset, a novel cluster (the second cluster) ap-
pears at the same time across five conditions, followed by another new cluster. However, in the symbol condition, the third cluster
(;250ms) appears earlier with a much shorter duration than four-character string conditions. C, The topographies of each cluster.
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Figure 3. The effects of lexicalized chunks revealed in the paired comparisons between GnLn condition and the other three lexical
conditions (GwLw, GwLn, and GnLw). A, ERP waveform responses in the representative channels P3 and P4. One-way ANOVA did
not reveal any response amplitude differences among conditions. B, RMS waveform responses of all channels. No amplitude differ-
ence was found. C, Topographical comparisons of response amplitude. Each row shows a comparison across time. The color
scheme depicts the differences in response amplitude between conditions. No significant difference was found on the electrodes
after the multiple comparison correction (FDR). D, The temporal dynamics of TANOVA on paired comparisons (uncorrected). The
red boxes highlight the earliest latency when the significant differences were observed. All three conditions show evidence of early
lexical detection. E, The temporal dynamics of TANOVA on the comparison between GnLn and the average of three lexical
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the global level or at the local level to test the dynamics of
chunk processing. We compared ERPs from the channels
of P3 and P4 for words and nonwords, separately at the
global and local levels (Fig. 4A,B), as well as RMS from all
channels (Fig. 4C). Paired t tests were applied to these
data. We found that the lexicality effects occurred as early
as 160ms at the global level, but much later around
250ms at the local level. These effects are in selected pa-
rietal channels but are absent in the RMS, suggesting the
effects are narrowly distributed, which is consistent with
the distribution results in Figure 4D. When comparing the
strings that contained a global-level word (GwLw, GwLn)
with the strings that contained global-level nonword
(GnLw, GnLn), the significant differences were observed
in the electrodes over the middle parietal and left frontal-
temporal regions (Fig. 4D, indicated by white points) start-
ing around 170ms (Fig. 4D, red arrow). When comparing
the strings that contained a local-level word (GwLw,
GnLw) with the strings that contained local-level nonword
(GwLn, GnLn), the significant differences in response am-
plitudes started much later at the latency around 230ms
in the electrodes over frontal and parietal-occipital re-
gions (Fig. 4D, blue arrow).
The TANOVA results in Figure 4E further showed that

response patterns were statistically significantly different
between processing the distinct lexical status at the
global level began around 160ms after the stimulus onset
(Fig. 4E, red arrow), and the significant pattern differences
at the local level began around 220ms (Fig. 4E, blue
arrow), consistent with the observation in Figure 4A,D, as
well as the observations of late differences in Figure 3D.

Discussion
This study investigated the processing dynamics of

written texts that included different levels of chunks, such
as word and phrase. With the stimuli of Chinese four-
character strings that contain multiple grain-size language
chunks, the behavioral results showed that the recogni-
tion of lexicalized local chunks was affected by the lexical
status of global chunks, but not vice versa. These results
suggested that the processing of chunks at the global
level was prioritized over the processing of local ones dur-
ing reading. Moreover, the earliest EEG responses
showed distinct patterns between lexicalized and non-
lexicalized chunks, and the latency of successive EEG re-
sponses was faster when processing chunks at the global
level than that for local chunks. These consistent behav-
ioral and electrophysiological results suggested that two
distinct stages successively operate in the early stage of
reading for the detection of potential chunks and further
processes on the detected chunks at multiple levels.

Detection of chunks at 100ms
In the clustering results (Fig. 2), a “temporal gap” was

observed in the early EEG reading responses and

separated the processing from 80 to 200ms into two dis-
tinct clusters, suggesting the different neural bases and
possible distinct functions. Furthermore, the response
patterns of the earliest cluster around 100ms were modu-
lated by the lexical status of chunks at both global and
local levels (Fig. 3). These findings are consistent with the
early lexical familiarity checking mechanism proposed in
the E-Z reader model (Reichle et al., 2003). Language
chunks and their lexical status should be checked before
accessing the semantics. In other words, the familiar lexi-
cal chunks are detected before subsequent processes
(e.g., semantic retrieval). This is especially important in
the language that lacks explicit boundaries for lexicalized
chunks/phrases, such as written Chinese. Our results
suggest such lexical checking/detection can occur early
in the reading process around 100ms and extend to mul-
tiple chunk levels.
What factor enables this early chunk detection in read-

ing? Top-down mechanisms have been proposed to ac-
count for perceptual and cognitive functions, such as the
prior knowledge or prediction of the global shape informa-
tion in object recognition (Bar, 2003; Bar et al., 2006;
Panichello et al., 2012). The detection of language chunks
at multiple levels during reading involved the left frontal
regions and occipital regions (Fig. 3A), similar to the top-
down modulation by the early feed-forward projection of
low spatial frequency information (Bar et al., 2006). In pre-
vious research, high-frequency words can be easily de-
tected and recognized (Monsell and Besner, 1991; Ellis,
2002). The transparency (MacGregor and Shtyrov, 2013)
and decomposability (Abel, 2003; Vannest et al., 2005)
also affect the mental encoding of complex words,
phrases, and idioms. However, individual differences in
reading may make the perception of these physical attrib-
utes vary across individuals. Therefore, the factor that
leads to the early chunk detection is likely to be the per-
ceptual consequences, the familiarity of these attributes.
The familiarity has been demonstrated in improving lan-
guage retrieval (Bannard and Matthews, 2008; Zheng et
al., 2015). In this study, we controlled the familiarity by
only using stimuli that were rated at the extreme degree of
familiarity, either very familiar words or strange nonwords.
We speculate that the familiarity of lexical-orthographic
features (such as frequency and decomposability) is the
criterion of chunk detection, and it can apply simultane-
ously at both global and local levels during early reading
processes.

The priority of processing global chunks
Our behavioral results demonstrated that the process-

ing of a global chunk significantly affected the lexical deci-
sion of lexicalized local chunks. In contrast, the local
chunks had no impact on the lexical decision of the lexi-
calized global chunk. The unidirectional effect suggested
that the processing of global level chunks had priority

continued
conditions, corrected by temporal clustering analysis with a corrected threshold of 0.05 (Maris and Oostenveld, 2007). The lexicality
effects emerge around 100ms.
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Figure 4. The processing dynamics of chunks at global and local levels. A, ERP waveform responses of the global lexicality effect in
the representative channels P3 and P4; t tests revealed the effects occurred around 160ms. The shaded area indicates p, 0.05. B,
ERP waveform responses of local lexicality effect in the representative channels P3 and P4. The effects occurred around 250ms,
later than the global lexicality effect in A. The shaded area indicates p,0.05. C, RMS waveform responses of all channels on global
lexicality and local lexicality comparisons. No amplitude difference was found. D, Analysis of response amplitude in topographical
comparisons between different lexical status at the global level (upper row) and at the local level (lower row) across time. The color
scheme depicts the differences in response amplitude between conditions, and the white points superimposed on the topographies
indicate the electrodes that showed significant differences after multiple comparison correction (FDR). E, The temporal dynamics of
TANOVA results. The results showed a distinct starting time of significant response pattern differences between different lexical
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over the processing of their constituents. EEG further pro-
vided evidence supporting the temporal hierarchy in proc-
essing global and local chunks. The EEG results showed
that the processing of global chunks started around
160ms, while the onset of local chunk processing was
much later (;220ms). These EEG results, together with
our behavioral data, demonstrated that after the simulta-
neous chunk detection at both levels, the processing of
different sizes of lexical chunks began at different times:
the processing of global chunks preceded that of local
chunks.
The priority of global information has been demon-

strated in many cognitive domains. Gestaltism (Heider,
1977; Dewey, 2018) considers the global contains more
information than the aggregation of its locals. In vision,
the global precedence effect (Navon, 1977/7) suggests
that recognizing a scene is hierarchical and global proc-
essing has priority over local processing. In contrast, local
processing is subject to the top-down reevaluation and
integration into global processing. Similarly, the top-down
facilitation of visual object recognition also implies that
the activation of high-level information will be faster than
the lower-level information (Bar, 2003; Bar et al., 2006). In
linguistics, the word superiority effect (Reicher, 1969), an
advantage of words on recognizing letters, suggests that
the processing of a word at the global level interacts with
the letter identification (McClelland and Rumelhart,
1981b). This study further demonstrates the influences of
phrases on words. Our results expand previous research
and suggest that the global-priority mechanism can be
applied across multiple levels in a hierarchical manner in
the linguistic context. The priority of global chunks is con-
sistent with the information theory (Shannon, 1948): larger
chunks contain more context information and less internal
entropy, which can prevent ambiguity.

Paralleled processing of chunks at both levels
The behavioral results revealed that the judgment of a

non-lexicalized phrase at the global level was more diffi-
cult when the task-unrelated chunks were familiar words
at the local level. These results indicated that local proc-
essing might be initiated before the finish of global proc-
essing. The EEG results further supported that processing
at both levels temporally overlapped, the response pat-
terns of processing global chunks continued after the
start of local processing response patterns (Fig. 4). This
observation of partially temporal overlap in the processing
part-whole hierarchies is consistent with simultaneous
processing mechanisms implemented in the connection-
ist networks (Hinton, 1990). A scheduler could control the
participation of processing at different levels. Should
processing a chunk exceed expected duration, the proc-
essing of chunks at other levels would occur. Moreover,
the topographic patterns showed left lateralization for

processing chunks at the global level, whereas both hemi-
spheres engaged in processing chunks at the local level
(Fig. 4), suggesting the possible anatomic differences that
mediate the partially temporal paralleled processes at
both levels.

Chunking in a broader cognitive perspective
Various cognitive functions can exert a top-down influ-

ence on early perceptual responses. For example, atten-
tion is one of the most common functions that modulate
early perceptual responses, such as increasing the re-
sponse gain in the visual (Fries et al., 2001), auditory
(Poghosyan and Ioannides, 2008), and somatosensory
(Steinmetz et al., 2000) domains. The current study offers
a new top-down influence in a linguistic context. The lexi-
cality/accessibility of the character combination deter-
mines the way of chunking and recombination of
characters to form representations at both global and
local scales. Such reconstruction of representations may
modulate the early visual responses in reading.
The top-down influence provides a common framework

that links among cognitive systems. For example, orofa-
cial motion alters speech perception, such as the McGurk
effect (McGurk and MacDonald, 1976), and shortens la-
tency of early auditory responses (Van Wassenhove et al.,
2005). Speech articulation dampens the auditory re-
sponses to speech feedback (Houde et al., 2002) and
modulates the sensitivity to auditory stimuli via the motor-
to-sensory transformation (Tian and Poeppel, 2010, 2013,
2015; Tian et al., 2016, 2018; Ma and Tian, 2019; Li et al.,
2020). The current study provides evidence supporting
that the language system can penetrate and influence vis-
ual processing.
Chunking, which deducts combinatory representations

into more basic linguistic units for processing, plays a cru-
cial role in language comprehension. Previous studies
suggest that linguistic chunking arguably occurs in com-
plex morphology such as decomposing compounds into
morphemes – the smallest linguistic unit that carries
meaning (Stockall and Marantz, 2006; Fiorentino and
Poeppel, 2007). The current study further demonstrates
that phrases can be segmented into smaller linguistic
units based on lexicality at both global and local levels.
Our results bridge chunking in morphology with chunking
in sentences based on semantics and syntax (Ding et al.,
2016), and even higher linguistic levels such as para-
graphs or an entire text based on formal structures and
conceptual flow (Teng et al., 2020). A complete picture of
chunking operation across all levels of linguistic hierarchy
emerges.
The two-stage processing suggested by our results may

contribute to the debate regarding the accessible units in
complex words (Giraudo and Dal Maso, 2016). Some stud-
ies suggest that the morphologic decomposition occurs

continued
status at the global and local levels. The red arrows in all plots indicate the earliest latency of difference in the global level compari-
son, and the green arrows indicate the earliest latency of difference in the local level comparison. The results were corrected by a
temporal clustering analysis with a corrected threshold of 0.05 (Maris and Oostenveld, 2007).
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only on the semantically transparent morphologic pairs
(e.g., hunter–HUNT; Meunier and Longtin, 2007). In con-
trast, other studies found the semantics-opaque but mor-
phology-complex words (e.g., corner = corn 1 er) also
showed decomposition (Davis, 2004; Devlin et al., 2004;
Gold and Rastle, 2007). That is, the surface morpheme-
like unit that could be an interface between form and
meaning is accessible regardless of the semantic relation
between the global level and its constituents (Devlin et al.,
2004; Gold and Rastle, 2007). Our results are more con-
sistent with the latter view and suggest that this surface
morpheme-like unit could be detected automatically as
long as it is available. Specifically, these results show that
bi-character words, which are bi-morpheme units, are
also automatically decomposed from phrases, suggesting
that the surface morpheme-like unit in the decomposition
is not limited to the basic linguistic morphemes. Furthermore,
the access of the surface morpheme-like unit has been
localized over the occipito-temporal and left inferior fron-
tal regions (Devlin et al., 2004; Gold and Rastle, 2007;
Meinzer et al., 2009; Pliatsikas et al., 2014), which is con-
sistent with our EEG topographic pattern (Fig. 3C).
Orthographic typicality and lexicality modulate reading
responses around 100ms (Hauk et al., 2006; Faísca et
al., 2019), which is also consistent with the detection
timing in our observations.
The “global first” principle in different levels of accessi-

ble units has been observed in morphology (Bybee,
1995), letter detection (Han et al., 2003), and general vi-
sion (Chen, 1982; Wang et al., 2007). All these results are
consistent with our findings that processing global level
information possesses priority (Fig. 4). Last, the discrep-
ancy between global and local information affects ERP re-
sponses as early as 250ms (Han et al., 1999), suggesting
a possible initiation time of parallel processing that is con-
sistent with our results (Fig. 4).
The chunking operation is universal among sensory mo-

dalities for processing information that is beyond cogni-
tive capacity. However, the nature of stimuli among
sensory modalities may differentiate the possible neural
mechanisms that mediate chunking. For example, linguis-
tic information unfolds over time in speech, whereas the
information can be available at the same time in reading
(e.g., visual field and reading span). Therefore, temporal
processing such as neural oscillations might be a poten-
tial dominant mechanism for chunking in the auditory
domain with neural entrainment to acoustic features
(such as prosodic cues and speech envelope; Luo and
Poeppel, 2007), top-down rhythmic and melodic tem-
plate (Nozaradan et al., 2011; Di Liberto et al., 2020),

semantic and syntactic cues (Ding et al., 2016, 2017), as
well as structures and formats of language (Teng et al.,
2020). However, in the visual domain, additional spatial
information can be available at a time. Chunking is more
likely based on the template from higher hierarchy, such
as orthographic template in global/local letters (Kimchi,
1992) and mental representation of lexicality in the cur-
rent study.
Based on all results, we tentatively put forward a work-

flow of processing multiple-level information in reading
(Fig. 5). The segmentation occurs in an early short time
window, and possible chunks at all levels are detected
based on the familiarity of lexical-orthographic features
(detection stage). The chunks at each level are further
processed with distinct temporal characteristics (proc-
essing stage). Specifically, the processing of global
chunks possesses priority over the local chunks, while the
processing of local chunks can launch before the finish of
global chunk processing. Hence, the processes of chunks
at two levels have a partially temporal overlap that ena-
bles interaction across levels before final integration.
Because our primary goal was to test the relation be-

tween lexicality and chunking at different levels, we con-
trolled the lexical-orthographic features such as the
number of strokes, and frequencies. Theoretically, lexical
access arguably occurs earlier than the semantic pro-
cess. It is more likely that lexical factors are the primary
factors mediating the effects that we observed. Semantic
attributes could be another factor influencing the late pro-
cess of chunking. It would be of interest to study seman-
tics in chunking and obtain a complete understanding.
Moreover, we investigated the computational dynamics
of chunking in reading by testing the response latencies.
EEG is one of the optimal tools to test the dynamics and
latency, but not an optimal tool for inferring the spatial lo-
cation of sources. The spatial distribution in topography is
a distorted and incomplete representation of underlying
neural sources because the topography is most likely a
manifestation of a mixture from multiple neural sources.
To avoid confusion, we only take advantage of changes in
topographies across time or across conditions to infer the
neural dynamics (Tian and Huber, 2008; Tian et al., 2011;
Yang et al., 2018; Wang et al., 2019). Nevertheless, the lo-
cation of the chunking operation is another aspect of in-
terest. We planned to use fMRI for further investigation.

Conclusion
The current study investigated the chunking mecha-

nism in reading. Consistent behavioral and EEG results

Figure 5. Schematic diagram of proposed two-stage chunking operation in reading.
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suggested that multiple levels of chunks were realized via
two distinct stages of chunking in the early time course of
reading. The first stage detected lexicalized chunks at all
levels of grain-size. In the second stage, in contrast, the
processing at the global level led the local level and re-
sulted later in a parallel and interactive process. This
study revealed the rich dynamics of chunking operation
during reading, which provides the starting computation
for comprehension of hierarchical language systems.
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